Threonine production by ethionine-resistant mutants of Serratia marcescens.
نویسندگان
چکیده
Ethionine reduced both the growth rate and the final growth level of Serratia marcescens Sr41. Growth inhibition was completely reversed by methionine. Strain D-315, defective in homoserine dehydrogenase I, was more sensitive to ethionine-mediated growth inhibition than was the wild-type strain. Ethionine-resistant mutants were isolated from cultures of strain D-316, which was derived from strain D-315 as a threonine deaminase-deficient mutant. Of 60 resistant colonies, 7 excreted threonine on minimal agar plates. One threonine-excreting strain, ETr17, was highly resistant to ethionine and, moreover, insensitive to methionine-mediated growth inhibition, whereas the parent strain was sensitive. When cultured in minimal medium with or without excess methionine, strain ETr17 had a higher homoserine dehydrogenase level than did strain D-316. The homoserine dehydrogenase activity was not inhibited by threonine or methionine. Transductional analysis revealed that the ethionine-resistant (etr-1) mutation carried by strain ETr17 was located in the metBM-argE region and caused the derepressed synthesis of homoserine dehydrogenase II. Strain ETr17 had a higher aspartokinase level than did the parent strain. By transductional cross with the argE+ marker, the etr-1 mutation was transferred into strain D-562 which was derived from D-505, a strain defective in aspartokinases I and III. The constructed strain had a higher aspartokinase level than did strain D-505 in medium with or without excess methionine, indicating that the etr-1 mutation led to the derepressed synthesis of aspartokinase II. Strain ETr17 produced about 8 mg of threonine per ml of medium containing sucrose and urea.
منابع مشابه
Participation of lysine-sensitive aspartokinase in threonine production by S-2-aminoethyl cysteine-resistant mutants of Serratia marcescens.
S-2-Aminoethyl cysteine (AEC) reduced both growth rate and final growth level of Serratia marcescens Sr41. The growth inhibition was completely reversed by lysine. AEC inhibited the activity of lysine-sensitive aspartokinase to a lesser extent than lysine. The AEC addition to the medium lowered not only the level of lysine-sensite aspartokinase but also those of homoserine dehydrogenase and thr...
متن کاملSerratia marcescens B4A Chitinase Product Optimization Using Taguchi Approach
Chitinase production by newly isolated Serratia marcescens B4A was optimized following Taguchi’sarray methods. Twenty-three bacterial isolates were screened from shrimp culture ponds in the South ofIran. A chitinase-producing bacterium was isolated based on it’s ability to utilize chitin as the sole carbonsource. The isolate designated as B4A, was identified as Serratia marces...
متن کاملEvidence of an efflux pump in Serratia marcescens.
Spontaneous mutants resistant to fluoroquinolones were obtained by exposing Serratia marcescens NIMA (wild-type strain) to increasing concentrations of ciprofloxacin both in liquid and on solid media. Frequencies of mutation ranged from 10(-7) to 10(-9). Active expulsion of antibiotic was explored as a possible mechanism of resistance in mutants as well as changes in topoisomerase target genes....
متن کاملThreonine degradation by Serratia marcescens.
The wild strain of Serratia marcescens rapidly degraded threonine and formed aminoacetone in a medium containing glucose and urea. Extracts of this strain showed high threonine dehydrogenase and "biosynthetic" threonine deaminase activities, but no threonine aldolase activity. Threonine dehydrogenase-deficient strain Mu-910 was selected among mutants unable to grow on threonine as the carbon so...
متن کاملNucleotide sequence of the Serratia marcescens threonine operon and analysis of the threonine operon mutations which alter feedback inhibition of both aspartokinase I and homoserine dehydrogenase I.
The nucleotide sequence of the Serratia marcescens threonine operon (thrA1A2BC) was determined. Three long open reading frames were identified; these open reading frames code for aspartokinase I (AKI)-homoserine dehydrogenase I (HDI), homoserine kinase, and threonine synthase, in that order. The predicted amino acid sequences of these enzymes were similar to the amino acid sequences of the corr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 45 5 شماره
صفحات -
تاریخ انتشار 1983